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Computation of Hermite Polynomials 

By Laurance C. Eisenhart* and George E. Trapp, Jr. 

Abstract. Projection methods are commonly used to approximate solutions of ordinary 
and partial differential equations. A basis of the subspace under consideration is needed to 
apply the projection method. This paper discusses methods of obtaining a basis for piece- 
wise polynomial Hermite subspaces. A simple recursive procedure is derived for gen- 
erating piecewise Hermite polynomials. These polynomials are then used to obtain ap- 
proximate solutions of differential equations. 

1. Introduction. Projection methods using piecewise Hermite polynomials 
have been applied to the approximate solution of differential equations. A partial 
list of contributors would include: Birkhoff, Curry, Goel, Jerome, Lanczos, Schoen- 
berg, Schultz and Varga [1], [3], [5], [7], [9], [10], [12], [14]. In particular, Varga and 
Jerome ([7] and [14]) discuss the use of projection methods for ordinary differential 
equations. Piecewise polynomial subspaces are useful because the solution matrices 
are well suited for inversion procedures. 

The above authors have shown the advantages of higher order polynomials in 
increased accuracy. In this paper, we present a method of constructing these higher 
order polynomials. Goel in [5] has considered this problem. His results are primarily 
for low order polynomials. 

We begin by showing that the construction of piecewise Hermite polynomials 
of degree 2M - 1 is equivalent to inverting an M by M ill-conditioned matrix. 
Because of the ill-conditioning, we develop a recursive procedure to generate the 
polynomials. 

We construct the polynomials on the interval [0, 2], then we note that a simple 
change of variable gives the required polynomials for any mesh structure (see [12]). 

Finally, we illustrate the use of these polynomials by obtaining numerical ap- 
proximations for ordinary differential equations. 

2. Statement of the Problem. Given an ordinary differential equation on an 
interval [a, b], a mesh structure is defined by 

a = xO < xI < ... < XN < XN+1 = b. 

An approximate solution is sought in a finite-dimensional Hermite subspace of the 
appropriate Sobolev space, where a weak solution is known to exist [16]. The piece- 
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wise polynomials, which are used in the projection from the Sobolev space to the 
finite-dimensional Hermite space, are required to have nonzero support only in an 
interval of the form [xi-, xi+,]. We also require that the piecewise polynomials have 
M - 1 continuous derivatives, when the degree of the polynomials is 2M - 1. We 
show in Section 5 that once the polynomials have been constructed on one interval, 
a simple change of variable will give them on any interval. Therefore, our attention 
may be focused on obtaining a piecewise polynomial basis on one such interval. 
We will use [0, 2] for ease of notation. 

Definition. A class of M polynomials { Pi(x)}, each of degree less than or equal 
to 2M - 1, is called a Hermite class of order M on [0, 1] if, for each i = 1, ... , M, 
the following conditions are satisfied for j = 0, ... , M - 1: 

HI: Pi) (0) 0, 

H2: Pi i'(1) = 

Given {Pi(x)}, a Hermite class of order M on [0, 1], we define functions pi by 
the following: 

[PA(x), x C [0, L], 

P(X) = - Pi(2-x), x E [1, 2], 

10, x [0, 2]. 

These piecewise polynomials pi(x) clearly have support in [0, 2] and, by con- 
struction, they have M - 1 continuous derivatives. 

In Sections 3 and 4, we consider the problem of finding the Pi(x), i = 1, ... Mg 
on [0, 1]. 

3. Matrix Solution. Let M be a fixed positive integer. Define Pi(x) = 

i=Of1 Ci ixm+ . It is clear that P (0) = 0 for j = 0, .., M- 1, since Pi has a zero 
of order M at x = 0. Hence, to make {Pi(x), i = 1, * , M} into a Hermite class, 
it is enough to determine the Cii so that H2 is satisfied. Let f,(x) = +M+ i-, for j = 

1, ... , M, and let A(x) be the matrix defined by 

f I (X) f2(X) ... f M(x) 

A() X)= f2(x) ... fM(x) j 

_ ( M-1 )(X) M2( M-1)(X) . .. f M m(X )_ 

Since the f ,(x) are independent functions and DET(A(x)) = Wronskian [fI, ... * *, m] 
it follows that A = A(1) is invertible. 

LEMMA 1. Let C = [Cii] be the matrix of coefficients of the Pi, then AC = I 
if and only if the Pi are a Hermite class. 

Proof. By direct computation, we have A(x)C = [Pi-1 )(x)], and, thus, A(1)C = 

[P il)(1)] = = if and only if P('-l'(1) = 5i . Therefore, AC = I if and only if 
the Pi satisfy H2. Q.E.D. 

The elements of the matrix A may be explicitly determined. Since f ,(x) = xm 
we have 
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f9")(I) =(M + i- 1) ... (M + - k) 

= (M + i- 1)!/(M + i - k - 1)!. 

The determinant of the matrix A can probably be evaluated by using the results 
of Lavoie and Michaud [8], but a simple method is also available, and we will consider 
it instead. 

Define Fi(t) = fi(e') and let B(t) = [Fj'-1(t)]. If we also let xi = M + i - 1, 
then since fi(e') = we have 

DET(B(t)) = Wronskian [ea to ... , exmf] = e(Xlt+ * +XMt) Vandermonde[X1, * , XM]. 

Since Vandermonde [X1, ... , XM] = Hjsi<ijm (Xi - Xj, we obtain the following 
result. 

LEMMA 2. DET(A) = M Il (M -i). 

Proof Since DET(A) = DET(A(l)) and A(1) = B(O), we have 

DET(A) = Vandermonde [XA, ,M]. 

Therefore, for Xi = M + i - 1, we obtain 
M 

i<i i-l 

The aiM element of A is given by aiM = f(n-1)(1) = Hfm-j (M + i - k). Therefore, 
since M + ik > i, for k _ M, we have aiM > iM-. If we divide each row of the 
matrix A by aiM and evaluate the resulting determinant, we obtain the following 
sequence of inequalities: 

DET(A)/ aiM < DET(A)/ 1I im- 

M M 

< (M i)! II i 
M 

- II (M - !w)- 
Ii1 

<< 1/M!. 

A matrix is termed ill-conditioned whenever the absolute value of the determinant 
of the normalized matrix is small. The normalized matrix is obtained by dividing 
each row i of the given matrix by (Im, a i)212. The computation given above shows 
that A is ill-conditioned because 

|DET( A)/ T (1E aJ2i)I/2 < DET(A)/ ft aiM <1/M!. 

Since the matrix A is ill-conditioned, another procedure for determining the 
Pi is needed. In the next section, such a method is developed. Since that procedure 
determines the inverse of the matrix A, it may be applicable to general Vandermonde 
matrices (see Traub [13]). 

Since determining each Pi is a Hermite-Birkhoff interpolation problem of degree 
2M, the method of Galimberti and Pereyra [4] can be applied. References [2] and [6] 
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also discuss solving Vandermonde systems. In Section 5, we compare our method 
with that of Galimberti and Pereyra. 

4. Computation of the Hermite Polynomials. In this section, we describe a 
recursive procedure for the computation of a Hermite class of order M on [0, 1]. 

Let q,(x) = xM(x - 1)f-/(i - 1)!, i > 1. Clearly, each q,(x) satisfies H1 and, 
for i < M, q,(x) is of degree ? 2M - 1. Since q,+1(x) = q,(x)(x - 1)/i, we have 
by induction 

qt+1 (x) = qi' (x)(x - 1)/i + (j/i)q(i1 '(x). 

Letting x = 1 in this equation gives the following lemma. 
LEMMA 3. 

q(i0 (1) = (jli)q(i(1). 

LEMMA 4. 

qt '(1)= 0 for j <- 1, 

-1 for= i- 1. 

Proof. Suppose the lemma is true for i = k, by Lemma 3 we have 

q, 2(1)J) = (l~ 
i-1 1 qk + 1 ik~q 

Thus, if j < k then q'- 1)(1) = 0, and if j = k, then q,+i'(1) = (k/k)qk-l)(l) = 1. 

The lemma is clearly true for i = 1 and hence for all i. Q.E.D. 
Let PM(x) = xM(x - 1)M-1/(M - 1)!; clearly PM satisfies H2 since it has a zero 

of order M - 1 at x = 1, and P('-1'(1) = (M - 1)!/(M - 1)! = 1. Define Pk(X) 

for k = M-1, , 1 by the following: 
M 

(*) Pk(x) = qk(x) + E CrkPr(X), where Crk = qqk (1). 
r=k+ 1 

THEOREM 5. The { Pk(x)I defined by (*) are a Hermite class of order M on [0, 1]. 
Proof. The Pk are linear combinations of the qj, and thus they satisfy H1. Further- 

more, since Pm(x) = xM(x - 1)m'/(M - 1)!, we see that PM satisfies H2. For k < M, 

M 
Pk(X) = qk(x) + E CrkPr(X) 

r=k+ 1 

and, in view of q(i)(1) = 0 and Pi')(1) = 0, for j < k - 1, we see that P(i) = 0 
for j < k - 1. For j = k - 1, only qk(l) remains after j differentiations and Lemma 4 
shows this value is 1. Since j > k - 1 implies P(')(1) = 1, the definition of the Crk 
gives P(')(1) = 0. Q.E.D. 

The backward recursion formula (*) and the C, i are all that are needed to compute 
the Pk. 

We have q(')(x) = M(M - 1) * (M - j + 1)x"', therefore q(')(1) = -l(m). 
The following theorem supplies the values of the C,, in general. 

THEOREM 6. If j ? i then q'i'(1) = j! (i m 1)1(i - 1)!. 
Proof. The case i = 1 is given above. Suppose the result is true for i = k, then 

from Lemma 3 we have q '(1) = j/kq(-')(1), by our induction hypothesis 
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q'- 1)(1) = (j - 1)! (mAk)/(k - 1)!. Substitution into the expression above gives 
q( '+1) = j! (im )/k!. Q.E.D. 

5. Computational Aspects. Section 4 gives the equations needed for com- 
putation of a Hermite class. It is quite easy to program these equations. Since the 
qi(x) can be written as binomial coefficients of powers of x and the Cii are factorials, 
factorial evaluation and large integer division are the two major problems encountered. 
On the CDC 6600 (29S), the above procedure with 

EM = max {Pi) (1) - ii + (i)3i) }9 
l? ig M; Og ij M- 1 

gave the following results. 

M 2 3 4 5 6 7 

EM 0 0 10-11 10-i9 lo-, lo- 

For M = 4, the Pi(x) are 

Pl(x) = 35x4 - 84x5 + 7.Ox6 - 20x7, 

P2(x) = -15x4 + 39x5 - 34X6 + 10x7, 

P3(x) = 2.5x4 - 7x5 + 6.5x6 - 2 Ox7, 

P4(x) = -1/6x4 + . 5x5 - . 5X6 + 1/6x7. 

These polynomials are exact, the error E4 above is caused by computer roundoff 
in taking derivatives and evaluation. 

The polynomial Pi(x) for any M is defined by Pi')(0) = 0, j = 0, , M - 1, 

Pi(l) = 1, and P"'(1) = 0, j = 1, ,M- 1. 
This polynomial is generated last by our recursive procedure, and, in all cases 

tried, has the most roundoff buildup. Therefore, we compared this polynomial to 
that generated by the Galimberti and Pereyra method [4]. We will mention the result 
for M = 9, that is the 17th degree polynomial Pi(x). In running the program listed 
at the end of the paper of Galimberti and Pereyra, we encountered the following 
inconsistency. 

Whereas part of the input to be specified for subroutine "DUALCONF" includes 
values of the derivatives at the various nodes, what is actually needed is the value 
of the jth derivative divided by j!. This is apparent from reading the text of the paper. 

The maximum difference between the coefficients of the 17th degree Pi(x) poly- 
nomials occurs for the coefficient of x1". This difference is less than 10'-. 

Moreover, both coefficients are within 10'- of the true answer. Therefore, both 
methods supply accurate polynomials, and both require o(M3) operations to compute 
the M polynomials. It would seem that the only advantage of our method is the 
facility of computing all of the polynomials at the same time. This, we feel, is a minor 
advantage. 

It should be noted that once the polynomials have been constructed on [0, 1], 
a simple change of variable is all that is needed to obtain a Hermite class defined 
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for arbitrary mesh spacing. If we are given the interval [hl, h2], let A = - h1 and 
for i = 1, * ,M define 

R,(x) = A'-'P((x - h 

where {Pi(x)} is the Hermite class on [0, 1]. 
Then, for j = 0, , M - 1, we have R"' (x) = (hi1/A')P' i((x-h1)/A). 

Since P'i'(0) = 0, we see R"'(h)= 0; moreover, P'i)(l) = i&,j+ implies R(')(h2) = 
(At~1/Ai)6ii+1 and, therefore, R(')(h2) = bij+1. Thus, the polynomials Ri(x) satisfy 
the appropriate derivative conditions at x h hl and x = h2. 

Now, given [h1, h2] U [h2, h3], let Al = h2- h and Ri(x) be defined as above, 
and let A2 = h3- h2 and Si(x) be the equivalent polynomials for [h2, h3]. 

We now define the piecewise polynomials pi(x), i = 1, * , M, by the following 
formula: 

TRi(x), x E [hi, h2], 

p1(x) = (l1) +lSi(h2 + h3 -X), x E [h2, h3], 

10, x Et [hi, h3] 

In terms of the Pi(x), we may write 

J PAx- hl)/IA), x E [hi, h2], 

pi(X) = A(_ 2 )i+ P Ai-P ((h3 - X)/A2), x C [h2, h3], 

10, x EQ [hi, h3] 

The {pi(x)} so defined are piecewise polynomials on [hi, h3] and have M - 1 con- 
tinuous derivatives. This shows that once the Pi(x) have been constructed on [0, 1], 
the pi(x) can be constructed for any interval of the form [h1, h2] u [h2, h3]. 

One additional note, for two-dimensional rectangular meshes, is that a direct 
product of these polynomials supplies a basis (see [1] or [5]). 

6. Applications. Given the Hermite class, the projection method discussed in 
[4] may be implemented. This was done for a few simple ordinary differential equa- 
tions. Since integration of the polynomials times the coefficient functions and the 
nonhomogeneous term is required, we considered only constant coefficient problems 
with polynomial nonhomogeneous term. 

To further simplify the calculations, the interval [0, 10] was used with 
a mesh spacing of h = 1. The relative error was measured by computing 
E = maxz, IA(xi) - ,u(xi)l/lM(xi)l where ,u is the true solution, , is the Hermite 
approximate solution and the xi are one hundred equally spaced points in [0, 10]. 
All problems had j4(0) = j4(10) = 0 as boundary conditions. The results are sum- 
marized only for M = 2, ... , 7. The case M = 7 is polynomials of degree 13. These 
are sufficient for the cases below, considering the mesh size of one. 

1. -D2Au = x2, A(x) = -x4/12 + lOOOx/ 12 

M 2 3 4 5 6 7 
E 10-3 10- 12 10- 12 10-10 10- 10 10o0- 
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2. - D2A + ,A = x, M(x) = x - (10/ele) (ee - e&) 

M 2 3 4 5 6 7 

E 10-2 lo-5 10-7 10-7 10-7 10-7 

3. -D2u - A = x, A4x) = -x + 10 sin x/sin(1O) 

M 2 3 4 5 6 7 

E 10-l 10-4 lo-ra 10-9 lo-9 lo-9 

4. -D2u - A= x2, A(x) = -X2 + 2 + (98 + 2 cos(10)) sin x/sin(10) - 2 cos x 

M 2 3 4 5 6 7 

E 10-l 10-4 lo-ra lo-9 lo-9 10-9 

For case 1, the solution should be exact for M > 3, the error reported is due only 
to roundoff. No special considerations were used in programming this problem 
to avoid roundoff buildup. 

With this in mind, these results indicate that the use of higher order polynomials 
is one method of reducing approximation errors. The formulas developed in this 
paper allow computation of these higher polynomials quite accurately. 
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